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In this paper, an optimization technique is presented for the design of piezoelectric buzzers. This
design technique aims at finding the optimal configuration of the coupled cavity and diaphragm
structure to maximize the sound pressure output. Instead of measuring the material constants of the
piezoelectric ceramic and the metal diaphragm, an “added-mass method” is developed to estimate
the equivalent electromechanical parameters of the system on which an analogous circuit can be
established. The electrical impedance and on-axis sound pressure level of the piezoelectric buzzer
can be simulated by solving the loop equations of the electromechanoacoustical analogous circuit.
An interesting finding of this research is that the nature of the piezoelectric buzzer bears remarkable
resemblance to that in the dynamic vibration absorber theory. Much physical insight can be gained
by exploiting this resemblance in search of the optimal configuration. According to the system
characteristic equation, a design chart was devised to “lock” the critical frequency at which the
system delivers the maximal output. On the basis of the analogous circuit and the vibration absorber
theory, an optimal design was found with constrained optimization formalism. Experiments were
conducted to justify the optimal design. The results showed that the performance was significantly
improved using the optimal design over the original design. Design guidelines for the piezoelectric

buzzers are summarized. © 2007 Acoustical Society of America. [DOI: 10.1121/1.2756757]

PACS number(s): 43.38.Fx, 43.38.Ar, 43.40.Tm [AJZ]

I. INTRODUCTION

Piezoelectric buzzers are commonly used in many appli-
cations, such as household appliances, car security systems,
medical apparatus, etc. They are essentially narrow-band de-
vices intended to operate at the resonant frequency for large
sound pressure output. In other words, the driving frequency
generally coincides with the resonant frequency of the sys-
tem to achieve the maximal efficiency. Although the buzzer
technology is not new, this paper attempts to examine the
devices in light of rigorous electroacoustic analysis. It is
found from this research that interesting physical insights
can be gained from these quite common devices. Useful
guidelines for reaching optimal designs can also be derived
from these findings.

A typical piezoelectric buzzer consisting of a piezoelec-
tric diaphragm, a cavity with a port, and electrode terminals
is shown in Figs. 1(a)-1(c). The piezoelectric diaphragm is
generally made up of a piezoelectric ceramic disc attached to
a slightly larger metal plate. Some studies on piezoelectric
plates have been reported in the past. Caliano et al! pro-
posed a piezoelectric bimorph membrane sensor for pressure
measurement. Tseng and Liou,2 Dobrucki and Pruchnickli,3
and Wang et al.* conducted theoretical and numerical inves-
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tigations on the dynamic responses of bimorph piezoacoustic
transducers. The dynamic behavior of a circular piezoelectric
transducer was solved by numerical methods and compared
to the results of the finite element method. Aronov™® applied
energy methods to analyze the piezoelectric transducers and
established a model for simulation. A similar methodology
was also applied to other piezoelectric transducers, e.g.,
panel speakers,7 ultrasonic transducers,™ etc. Caronti ef al.’
modeled a capacitive micromachined ultrasonic transducer
by a two-port network. Gallas et al."” used lumped-element
models to examine the frequency responses of a
piezoelectric-driven synthetic jet actuator.

This paper aims at an in-depth analysis of the piezoelec-
tric buzzer, with the emphasis on the interactions between
the structural dynamics of the piezoelectric diaphragm and
the acoustical response of the cavity and port. As will be
demonstrated later in the paper, the physics underlying the
coupled mechanical and acoustical system is surprisingly
parallel to that of a dynamic vibration absorber.""" 1t is this
subtle mechanism that dictates the ultimate performance of
the buzzer. By taking advantage of this mechanism, maxi-
mum sound pressure output can be attained. In addition, sys-
tematic search procedures can be employed to find optimal
designs of the piezoelectric buzzer without time-consuming
trial and error. To facilitate the design optimization, a simu-
lation platform is established in the paper by using an experi-
mental parameter identification method, the added-mass
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FIG. 1. (Color online) Piezoelectric buzzer, (a) Photo of the buzzer, (b)
diaphragm structure, and (c) cross section of the piezoelectric buzzer.

method, similar to that wused for electrodynamic
loudspeakers.n’14 With the identified parameters, the electri-
cal impedance and the on-axis pressure response of the pi-
ezoelectric buzzer can be calculated by solving the loop
equations'® of the electromechanmacoustical (EMA) analo-
gous circuit."!* On the basis of the dynamic vibration ab-
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FIG. 2. (Color online) The measured electrical impedance of piezoelectric
samples. (a) Rectangular plate of a standard PZT 5A and (b) piezoelectric
diaphragm consisting of the PZT plate and the metal plate.

sorber theory, a characteristic equation can be derived for
predicting the resonance frequencies of the coupled mechani-
cal and acoustical system of the piezoelectric buzzer. A de-
sign chart method was thus developed according to the char-
acteristic equation to determine the optimal cavity and duct
dimensions. The method can also be extended to a broader
context in which both mechanical and acoustical parameters
need to be optimized. A constrained optimization technique
is developed using sequential quadratic programming
(SQP)'* " t0 optimize the design parameters. On-axis pres-
sure is selected to be the objective function for optimization,
whereas the driving frequency, elctroacoustical parameters,
dimensions of the cavity and port, etc., are appropriately
constrained. It will be demonstrated by simulations and ex-
periments that the optimized design significantly improves
the performance of the buzzer over the original design. The
physical insights as well as guidelines found in the design
optimization are summarized in Sec. V.

Il. MODELING OF THE PIEZOELECTRIC BUZZER

A sample of a piezoelectric buzzer with a 12.7 mm di-
ameter and 6 mm thickness is shown in Fig. 1(a). The piezo-
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TABLE I. Dimensions of cavity of the piezoelectric buzzer.

Parameters Dimension (mm)
Radius of rear cavity (a,z) 5.0
Height of rear cavity (d,p) 1.48
Radius of front cavity (ayf) 5.25
Height of front cavity (d,) 3.08
Thickness of cavity (z,) 0.76
Radius of port (a,) 1.065
Radius of plate (a,) 5.57
Thickness of plate (z,) 0.05
Radius of PZT (a,) 4.0
Thickness of PZT (z,) 0.09

electric diaphragm is fitted in a plastic case. A pair of metal
terminals are electrically connected to the piezoelectric dia-
phragm and drawn out from the back cover of the plastic
case. The front portion of the buzzer consists mainly of a
cavity with a circular port that serves as the sound outlet. The
cross section of the piezoelectric buzzer is shown in Fig. 1(b)
with dimensions indicated in Table I Figure 1(c) shows the
diaphragm consisting of a circular piezoelectric ceramic
(lead zirconate titanate, PZT 5A) and a circular plate (Fe-Ni
alloy, Fe-60%, Ni-40%). By comparing the electrical imped-
ance of this piezoelectric diaphragm [Fig. 2(a)] and that of a
rectangular plate of standard PZT 5A sample without the
metal plate [Fig. 2(b)], we found that the piezoelectric dia-
phragm exhibits basically similar characteristics to that of a
piezoelectric ceramic alone. This suggests that the piezoelec-
tric diaphragm can be modeled, in the low frequencies, by
the same structure of the electromechanical analogous circuit
in Figs. 3(a) and 3(b) as those used for a pure PZT sample. In
order to determine the lumped electromechanical parameters
in the circuit, a special experimental procedure was devel-
oped in this study and is detailed next.
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FIG. 3. Analogous circuit of the piezoelectric diaphragm. (a) The electrical
and the mechanical circuits and (b) the circuit expressed in the electrical
domain.

1570 J. Acoust. Soc. Am., Vol. 122, No. 3, September 2007

A. Parameter identification

Instead of calculating the lumped parameters using pi-
ezoelectric and other material constants, we opt to identify
these parameters directly from electrical impedance
measurement.'® This approach, the added-mass method, was
inspired by a commonly used method in identifying electro-
dynamic loudspeaker constants. Before the impedance mea-
surement, the front cover of the buzzer must be removed, as
shown in Fig. 4(a). Next, a 0.05 g clay patch is attached to

(a)

(b)

FIG. 4. (Color online) Piezoelectric buzzer without the front cover. (a)
Photo of the buzzer, and (b) photo of the buzzer with the added mass on the
diaphragm.
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FIG. 5. (Color online) The measured electrical impedance of the buzzer,
with and without the added mass.

the diaphragm, as shown in Fig. 4(b). The measured electri-
cal impedance curves of the piezoelectric diaphragm with
(solid line) and without (dashed line) the added mass are
shown in Fig. 5. Clearly seen in the impedance curves, the
resonant frequency (the trough in the curve) of the dia-
phragm has been decreased from 4875.0 to 3443.8 Hz be-
cause of the added mass.

The parameter identification procedure serves two pur-
poses. First, the response of the buzzer, including electrical
impedance, volume velocity, and sound pressure level (SPL),
can be simulated and performance can be assessed on the
basis of the EMA analogous circuit. Second, design optimi-
zation can be carried out on the platform of the identified
model to determine the optimal loudspeaker parameters. The
parameter identification procedure is outlined as follows.

1. Parameter estimation in the electrical
domain

Figures 6(a) and 6(b) show a generic Nyquist plot of the
electrical impedance and admittance of piezoelectric dia-
phragm (PZT + metal plate), respectively, from which the
serial resonant frequency (f,) and parallel resonant frequency
(f,) can be determined by locating the maxima of the real
parts of the admittance (G,,,) and the impedance (R,
respectively. The Nyquist plot enables us to determine the
parameters in Fig. 3(b). The dielectric losses (R;) can be
calculated from the minimum of the real part of admittance

(Gmin) s

Ry=—. (1)

From the serial resonant frequency (f,) and parallel reso-
nant frequency (f,); we may calculate the static capacitance
(Cyp), dynamic capacitance (C,), inductance (L), and quality
factor (Q) as follows:"’

CO = (fs/fp)ch’ (2)
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FIG. 6. (Color online) The measured Nyquist plots of the piezoelectric
diaphragm without the added mass. (a) Electrical admittance Y=G+ ;B and
(b) electrical impedance Z=R+;X.

C = Cf_ Co, (3)
L=, )
(27Tfs) Cl
1
Rl - Gmax’ (5)
0= ;, (6)
27fR,C,

where Cy is the free capacitance of the PZT, which is mea-
sured as 7.167E-9 F at 1 kHz for the piezoelectric dia-
phragm.

2. The added-mass method

The resonance frequencies of the piezoelectric dia-
phragm without and with the added mass can be written as

Bai et al.: Optimal design of piezoelectric buzzers 1571



FIG. 7. The EMA analogous circuit of the piezoelectric buzzer.

1
W, = T, )
VM ,C,
1
wn = /=’ (8)
V(Mp+AM4)Cy

where AM, denotes the added mass expressed in the acous-
tical domain and M, and C, denote acoustical mass and
compliance, respectively. Solving Eqgs. (7) and (8) simulta-
neously for M, and C, yields

R o
A_AMA (x)i (Ui ’
1
M,= . 10
A wiCA ( )

This corresponds to the mechanical mass and compliance,

My =M,S3, (1)
Ca

Ci=—2, 12

s (12)

where S, is the effective area of the piezoelectric diaphragm
(approximately 60% of the nominal area). The nonhomoge-
neity of the plate rather than the boundary condition leads to
the large value of the effective area. Its central part is thicker
than the peripheral, rendering the central part to vibrate al-
most as a rigid piston. Finally, the transduction factor (¢)
and the mechanical resistance (R,;) can be estimated as fol-
lows:

4 C_  [Mu
¢_ CM— Ll s (13)
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TABLE II. Lumped parameters of the piezoelectric buzzer.

Parameter Value Parameter Value

£, (Hz) 4931.3 R,(Q) 3870.5
f; (Hz) 4875.0 Ry(QY) 1.50E6
f (Hz) 4812.5 0 40.6

f, (HZ) 5018.8 M, (kg) 5.25E-5
C, (F) 8.96E-9 C;, (m/N) 2.08E-5
C, (F) 2.08E-10 Ry (N s/m) 3.86E-2
L, (H) 5.13 H(N/V) 0.0032

2
Ry = ¢°R;. (14)

Following the preceding parameter identification procedure,
lumped parameters of the piezoelectric diaphragm were cal-
culated and summarized in Table II.

B. Frequency response simulation

After the lumped parameters of the piezoelectric dia-
phragm are identified, the response of the buzzer can be
simulated on the basis of the EMA analogous circuit of Fig.
7. In the acoustical domain, the acoustical mass of port
(M 4p), the acoustical resistance of port (R, p), and the acous-
tical compliance of front cavity (C,y) are calculated using
the following formulas: 13

Myp= %(Q +1.462a,), (15)
P
ol a,
RAP—7V200,U« a—+6.4 1- AR (16)
P P
\%
CAF=p_ACI;’ (17)
0

where a, is the radius of port, 7. is the thickness of front
cavity, u is the viscosity coefficient (u=1.56
X 107m?/s),b is the diameter of the piezoelectric dia-
phragm, V, is the volume of front cavity, c is the speed of
sound (¢c=345 m/s at the room temperature), and p is the
density of air (py=1.21 kg/m?). It can be shown that the
loop equations15 corresponding to the analogous circuit of
Fig. 7 are written as the following system of linear equations:

Zgs — PZgp -1 0 0 i Vg
0 st - ¢ Sd 0 u 0
1 e |=| 0 (18)

0 -8 (M s+ ) 1 0 ’
ATA AFS Cars e 0
-5 1 i’ 0

0 d 0 0 Myps+ +Rp|E 4 LT
L Caps AFS i
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where V, is driving voltage, s=jw is the Laplace variable,
and

Zpp= _1 ||R (19)
Cog 0>
Z,=2Z MyS + _1 +R (2())
s— &M M c's M-

M

Using the loop equations, the electrical impedance and the
sound pressure output of the buzzer can be simulated.

C. Theory of dynamic vibration absorber

There is a common, but often overlooked, mistake in
designing a resonant device of this kind. Since a piezoelec-
tric buzzer is a narrow-band device, it is tempting to tune the
resonant frequency of the acoustical system (w,) to coincide
with that of the mechanical system (w,,), i.e., w,=w,,, such
that the device would produce the maximum output when
driven at this coincided frequency. Hence, instead of maxi-
mum response, the output turns out to be rather small at the
driving frequency. In fact, counterintuitive phenomenon
arises in the bass-reflex and bandpass designs of loudspeak-
ers as well. Not much about its aspect has been reported in
the previous research to date. It is worth exploring the phys-
ics underlying the coupled mechanical and acoustical reso-
nators.

1. Dynamic vibration absorber

Consider a machine rotating with constant speed w, as
shown in Fig. 8(a). The displacement responses, X, (w) and
X,(w), of this two degree-of-freedom system can be shown

11,12
to be

)?1 (w) = (ky = wzmz)F

1
Ao eq> (21)

- 1
Xo(w) = ——k,F,
2( ) A(w) 2% eq
where w is angular frequency, m; and k; are the mass and the
spring constant of the rotating machine, m, and k, are the
mass and the spring constant of the vibration absorber, F, is
the unbalance force amplitude, and

A(w) = (ky + ky — @’my) (ky — @’m,) = k3 =0 (23)

(22)

is the frequency-dependent characteristic equation. In gen-
eral, the undamped dynamic vibration absorber is “tuned” for
ki/my=ky/m, such that X,(w) approaches zero at the fre-
quency wy=\k;/m;=vk,;/m,, as shown in Fig. 8(b). This is
the characteristic that is frequently exploited to suppress
narrow-band vibrations of rotating machinery.

2. Design of resonant acoustical devices

The design of a resonant acoustical device, here a piezo-
electric buzzer, shares quite similar electroacoustical struc-
ture with the preceding vibration absorber problem. Figure 9
shows this structure in the mechanical domain, where a serial
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FIG. 8. (Color online) Dynamic vibration absorber. (a) A rotating machine
attached with an absorber and (b) frequency response magnitude.

second-order oscillator circuit is coupled with a parallel
second-order oscillator circuit. It is mathematically easier to
derive the system characteristic equation by having a parallel
resistance R,; on the mechanical side, with R,p neglected, in
the circuit. Nevertheless, in deriving the design chart, only
the undamped resonant frequencies are of concern. The ac-
tual position of the mechanical resistor is immaterial since
both resistors are removed in the circuit of the coupled sys-
tem. Note, however, that the port loss R,p is considered in
the constrained optimization procedures with the circuit of
Fig. 3. When w,=w,,, the motion of the mechanical system
cancels that of the acoustical system, or alternatively viewed,
the infinitely large impedance of the acoustical system

C ;»1 My Ry

Up
i U 8 Up
+
f R Car Myp
_ -

FIG. 9. A simplified analogous circuit of the piezoelectric buzzer expressed
in the mechanical domain.
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“blocks” the motion of the mechanical system. This is the
feature that is frequently exploited to suppress vibrations,
which forms the basis of vibration absorber theory. However,
in the case of resonant acoustical devices, the naive approach
of choosing equal resonant frequencies for both systems will
result in an unexpected response null at wy=w,,. This is
obviously undesirable in the buzzer design. Contrary to vi-
bration control, where one seeks to minimize the response,
our purpose here in the acoustical design of buzzer is to
maximize the sound pressure output, and it is the peaks of
frequency response that we are after.

Let U, be the total velocity emitted from the diaphragm,
the port, and the air leaks. From Fig. 9,

U0=UD+UP+UL=_UB’ (24)

where Uy is the net velocity entering the enclosure. The me-
chanical impedance and the acoustical impedance are given
by

2 18
—+Q——+1
[0} w
mS Cys

$2 18

L1 o oa !
0]

YA:CAFS+_+ = A A4 (26)
AL Maps M yps

The total electrical impedance can be written as the sum of
the mechanical impedance and the acoustical impedance:

1 A(s)
Zr=Zy+—= , 27
TmEM Ty, T (st 1S @7
Cys|\| 7 +——+1
wy A Wy
where
2 2 1
A(s):( s2 +—2—+1><s—2+—i+1
M M OM W, Ojwy
+MAPC1,WSZ (28)

denotes the characteristic equation, w,, is the resonant fre-
quency of the mechanical system (the piezoelectric dia-
phragm),

1
=\/—. 29
ou= e (29)

w, is the resonant frequency of the acoustical system (the
cavity and port),

A\ — (30)
o=\,
AT N MupCur

and Q) and Q, are the quality factors of the mechanical
system and the acoustical system, respectively, given by
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1

= 31
Owm RoClron (31)
R
Q4= ﬁ. (32)
AF®A

It can be shown that the characteristic equation in Eq. (28)
can be rewritten into an alternative form

S4 S3 S2 N
A=—+ay—+ay—+a—+1=0, (33)
(OX) (ON) (ON (O0)

where the frequency w and the coefficients a;,a,, and a5 are
defined as

!’— w !’_
wy = \’wAwM=Tﬂ=wAVa, (34)
1 /
ap = — + E, (35)
QM\"CY QA
1 1
a=—+a+ +£, (36)
OuQs «
—
1 Va
Uy= —=+ —. (37)
QA\’/; QM

In these equations, the frequency ratio a and the mass ratio p
are defined as

a=M <, (38)
Wy
M

p=—2L>0. (39)
My

For undamped systems, where Q,,— and Q,—c, the
characteristic equation simplifies to

AS)=?ry—(1+?+p)ri+1=0 (40)
in which the normalized frequency r,, is defined as

rM=w£, (41)
M

Solving for the roots of the characteristic equation yields
two undamped natural (resonance) frequencies. Note that the
resonance frequencies of the coupled (mechanical and acous-
tical) system are generally different from, but strongly influ-
enced by, those of the individual subsystems. According to
Eq. (40), the resonance frequencies of the coupled system
can be plotted versus the mass ratio p for various frequency
ratios «. This gives the design charts shown in Fig. 10, in
which the curves for mass ratio p>0 are in used, while the
curves for mass ratio p<0 are only mathematical.

3. Acoustical design by the design chart

Assuming that the properties of the mechanical system
are fixed, we now focus on the design of the acoustical
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FIG. 10. (Color online) The design chart of the piezoelectric buzzer. (a) 0
<a<1and (b) ISas2.

system with the aid of the design chart. The design variables
we wish to determine are the volume of cavity, the radius of
port, and the length of duct. The design procedure is outlined
as follows:

(1) Specify design constraints. Fix the mechanical resonant
frequency (fy;=w,,/27) of the piezoelectric diaphragm.
Assume fy=w,/27<fy.

(2) Fix the first resonant frequency (f;=w;/27) of the
coupled system (piezoelectric buzzer) at the driving fre-
quency, e.g., 4 kHz.

(3) From the mechanical resonant frequency (f),) and the
first resonant frequency (f;), calculate the normalized
frequency (ri=f1/fy)-

(4) Choose a mass ratio (p) and determine the acoustical
mass (M ,p).

(5) Assume a value for the radius of port (a,). Determine the
length of duct (z.) according to Eq. (15).

(6) Choose the design curve (a) that corresponds to the nor-
malize frequency and mass ratio determined previously.

J. Acoust. Soc. Am., Vol. 122, No. 3, September 2007

(7) Determine the acoustical resonant frequency, f4=f3,/ a.

(8) Per Eq. (30), calculate the acoustical compliance (Cy)
based on M,p and f,. Also calculate the cavity volume
according to Eq. (17).

lll. OPTIMAL DESIGN OF THE PIEZOELECTRIC
BUZZER

The optimization design procedure is based on the pre-
ceding piezoelectric buzzer model. The purpose here is to
find the best mechanical and acoustical parameters of the
piezoelectric buzzer to attain the maximum sound pressure
output at the driving frequency under prescribed constraints.
The design chart method and the Sequential Quadratic Pro-
gramming (SQP) algorithm are employed to find the optimal
parameters.

A. Sequential quadratic optimization theory and
syntax

A brief review of a nonlinear programming technique,
the SQP algorithm, is given in this section.'™"® In the solu-
tion process of the SQP method, a nonlinear programming
problem is first converted to a sequence of unconstrained
minimization problems. A Quadratic Programming (QP) sub-
problem is then solved at each iteration. Consider the follow-
ing nonlinear programming problem:m

Minimize f(x)
42
) hi(x)=0, i=1,....p (42)
subject to _ .
hi(x) <0, j=1,...,m,

where x € R" is the design variable vector, f:R"— R, being
the cost function, h;: R’ — R, being the equality constraints,
and h;: R"— R, being the inequality constraints. Other types
of linear constraints including matrix and bound types can all
be cast into the generic form in Eq. (42). The SQP method
requires a quadratic model for the objective function and a
linear model for the constraint. This is done by formulating
the QP subproblem based on a quadratic approximation to
the Lagrangian function,'®

4 m
L(x,p.v) = f(x) + 2 why(x) + 2 vi[hi(x) +g71.  (43)
i=1 i=1

where p; and v; are the Lagrange multipliers, and g; are
termed the slack variables. By the Kuhn-Tucker conditions,®
it suffices to solve the unconstrained optimization problem
using the above-mentioned Lagrangian function. In practice,
however, a simplified problem can be obtained by approxi-
mating the constraints (up to the first order) and the cost
function (up to the second order) using the Taylor expansion.
Thus, at the kth iteration, the SQP algorithm generates a
search direction, d;, for the following QP subproblem:
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Minimize V f1(x)d; + 3d/B,d,

hi(x) + Vhir(xk)dk =0,
hi(x) + VA (x)d, < 0,

i=1,...,1
j=l+1,....m.
(44)

subject to{

In Eq. (44), Vf, Vh;, and th denote the gradients of the cost
function, the ith equality constraint, and the jth inequality
constraint, respectively, d; is the direction of search in the
design space. The matrix B, is a positive definite approxima-
tion to the Hessian matrix of the Lagrangian function
L(x, py,v,). 0" B, is updated by using the Broyden,
Fletcher, Goldfarb, and Shanon method,

§’T5’ BkSSTBk

B =B, + . 45
k+1 k ST}A, sTBks (45)
where
S =Xpp1 — Xgs (46)

¥ =1V, L(Xps1s yr 1, Vir1) = Vo L(Xp i, Vi) 1+ (1 = )Bys.
(47)

Here, y is obtained using the damping factor 7 in order to
guarantee that B, is sufficiently positive definite at the so-
lution point. A positive definite Hessian is maintained, pro-
vided §7§/s’y is positive at each update and that By is ini-
tialized with a positive definite matrix. There are many
numerical methods to solve a QP problem, e.g., the modified
simplex method or the Kuhn-Tucker procedures.17 The solu-
tion of d; is used to update the estimate of x,

Xpe1 =X+ akdk. (48)

In the update equation, the step size parameter «; is deter-
mined by an appropriate line search procedure so that a suf-
ficient decrease in a merit function such as the Lagrangian
function is obtained.

The preceding optimization formalism was employed to
solve the piezoelectric buzzer design problem on the plat-
form of MATLAB.” The syntax of the constrained optimiza-
tion takes the following form augmented with various linear
equality and inequality constraints:

minf(x) subject to c(x <0)
x b

eg(x) =0,
AX<b, (49)

AXx=bgg,

Ib<x <ub,

where x is the design variable vector, b, beq, Ib, and ub are
constant vectors, A and Aeq are constraint matrices, ¢(x) and
Ceq(X) are constraint functions that return vectors, and f(x) is
the cost function that returns a scalar. f(x), ¢(x), and ¢4(x)
can be nonlinear functions. In the piezoelectric buzzer design
problem considered herein, the on-axis sound pressure at the
driving frequency 4 kHz of piezoelectric buzzer is defined as
the cost function.
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B. Constrained optimization method

In the following, two kinds of optimal design problems
of piezoelectric buzzer shall be examined. The first problem
focuses on the design of the acoustical system alone because
of the closer acoustical resonance to the driving frequency. In
this case, the volume of cavity, the port size, and the duct
length are to be determined, and the parameters of the me-
chanical system are assumed to be fixed. The second prob-
lem focuses on the design of both mechanical and acoustical
systems, where, in addition to the parameters of the first
problem, the parameters of the piezoelectric diaphragm are
to be determined.

1. Optimal design of the acoustical system alone

In this case, constraints are placed on design factors in-
cluding acoustical mass (M p), acoustical compliance (Cyy),
acoustical resistance (R,p), the first resonant frequency of
piezoelectric buzzer (f;=4 kHz), characteristic equation of
piezoelectric buzzer [A(s)=0], radius of port (a,) and height
of front cavity (d4r). Among these, a, and ¢, are selected to
be the design variables for optimization. In terms of the for-
going optimal formalism,

max SPL(a,.t.)
[ 0.001 < a, < 0.002
0.00308 < d,, < 0.005
IE-7<M,p<1E-5 (50)
st{ 2E5<R,p=<2E7
IE-4<C,<3E-4
£, =4000
. A=0

2. Optimal design of both mechanical and the
acoustical systems

The second case aims at the optimal design of the cavity
and piezoelectric diaphragm. Constraints are placed on de-
sign factors including acoustical mass (Myp), acoustical
compliance (C,p), acoustical resistance (R,p), the first reso-
nant frequency of piezoelectric buzzer (f;=4 kHz), mechani-
cal quality factor (Q,,), characteristic equation of piezoelec-
tric buzzer [A(s)=0], transduction factor (¢), mechanical
mass (M), mechanical compliance (C},), mechanical resis-
tance (Ry), radius of port (a,), height of the front cavity
(dsr), free capacitance of piezoelectric diaphragm (Cy), and
the clamped capacitance of piezoelectric diaphragm (C,).
From these parameters, M, CZ’W, Ry ap, dup, Cy, and C, are
selected to be the design variables for optimization. In terms
of the forgoing optimal formalism,
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FIG. 11. (Color online) Frequency responses of piezoelectric buzzer ob-
tained from the experiment and simulation. (a) Electrical impedance and (b)
on-axis SPL.

max SPL(ap,dAF’MMa CM’RM’ Cf’ CO)

0.001 < a, < 0.002
0.0015 < d,» < 0.005
4E-5=My,<T7E-5
IE-5<Cy<55E-5

0.01 =R, =<0.08
BE-9=<(C;<11E-9
TE-9<Cy<10E-9 (51)
st< 0.003 =< ¢ < 0.006
IE-7=<sM,<1E-5
2E5<R,<2E-7
IE-4<C,<9E-4

30< Q) <50

£, = 4000
A=0
L C\Li=CyMy
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FIG. 12. (Color online) Close-up view of the design chart for the present
buzzer design.

IV. NUMERICAL AND EXPERIMENTAL
INVESTIGATIONS

Simulation and experimental investigations are under-
taken in this paper to validate the aforementioned design
optimization techniques of the piezoelectric buzzer. A
1.5 Vs swept sine signal is generated to drive the piezo-
electric buzzer, with the frequency ranging from 10 Hz to
20 kHz. On-axis sound pressure response was measured by a
microphone positioned at 10 cm away from the piezoelectric
buzzer.

A. Response simulation and experimental
investigation

A simulation of the buzzer response was carried out on
the basis of the lumped parameter model identified previ-
ously. Figures 11(a) and 11(b) are the electrical impedance
and the on-axis SPL obtained from the simulation and ex-
periment, respectively. The simulated electrical impedance
(dashed line) is in reasonable agreement with that of the
measured results (solid line). The on-axis sound pressure re-
sponses of the simulation and measurement are also in good
agreement within the working range, 3.5-5.5 kHz. Except
for some minor discrepancies due to unmodeled structural
and acoustical modes, the main features, such as the main
peaks, are well captured by the lumped parameter model.

B. Optimal design by the design chart

Suppose only acoustical design is of interest and me-
chanical parameters are fixed, the optimal design of the cav-
ity and duct of the buzzer can be readily obtained from the
design chart. Assume that the piezoelectric diaphragm reso-
nant frequency is greater than the acoustical resonant fre-
quency (fy;>f4). The objective is to “lock™ the first peak of
the SPL of the coupled buzzer system onto the driving fre-
quency 4 kHz. The design variables are selected to be the
port radius and the duct length. According to the design chart
shown in Fig. 12 and the procedure detailed in the preceding
section, the optimal parameters including the port radius
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TABLE III. Results obtained using the design chart method.

Parameters Original Optimal Difference
t. (mm) 0.76 228 —200.0%
a, (mm) 1.065 1.5 40.8%
Myp (kg/m*) 786.81 766.01 -2.6%
Ryp (Ns/m) 3.31E6 2.14E6 -35.3%
p 0.0513 0.0499 -2.7%
f.(Hz) 4157.4 4242.20 2.0%

a 1.157 1.135 -1.9%
SPL (dB) at 4 kHz 73.3 79.9 6.6 dB

(a,), the duct length (z.), and the acoustical resistance (R4p)
are found and summarized in Table III. In this case, the nor-
malized frequencies r;=0.8305 and the mass ratio p
=0.0499, the frequency ratio a=1.1353.

Yet another approach by incorporating a duct in the de-
sign is also a viable option that does not require an unduly
increase of cavity volume. The cross section of this design is
shown in Fig. 13(a). The photo of a mockup of the optimal
obtained using the preceding design chart method is shown
in Fig. 13(b). The results obtained using the method of de-
sign chart shown in Table III reveal that the duct length is
increased by 200% to 2.28 mm, and the duct radius is in-
creased by 40.8% to 1.5 mm. The increase of duct length and
radius results in the decrease of M p and R,p. Alternatively,
one may opt to increase the cavity volume and the duct ra-
dius to reduce C,r and R,p. However, this approach by in-
creasing the cavity volume is generally unacceptable in prac-
tical design of buzzers. As can be seen in the optimal results,
a 6.6 dB increase of on-axis SPL is achieved at 4 kHz with
the increased radius and length of the duct. The simulated
(dashed line) and the measured (solid line) electrical imped-
ances and SPL frequency responses of the design are verified
in Figs. 14(a) and 14(b). In Fig. 14(a), the simulation and the
measurement results of electrical impedance are in good
agreement at the first and the second resonance frequencies.
In Fig. 14(b), the on-axis sound pressure responses of the
simulation and measurement are also in good agreement be-
tween the first and the second resonance peaks. Thus, the
improvement of the measured SPL over nonoptimal design is
approximately 6.6 dB.

The guidelines of using the design chart can be summa-
rized as follows. Reducing the acoustical mass (M,p) and
acoustical resistance (R4p) will increase the SPL at the peak.
However, reducing M ,p, equivalently, the mass ratio (p) will
shift the acoustical resonant frequency (f,) to a higher fre-
quency. In case of a buzzer design, the preferred strategy is
to select a lower mass ratio and a design curve with smaller
frequency ratio (@) in the design chart. After these search
steps, a satisfactory design can generally be found.

C. Optimal design by the constrained optimization
procedure

In this section, the aforementioned optimization tech-
nique is applied to two cases. First, only the acoustical pa-
rameters are to be optimized. Second, both the mechanical
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FIG. 13. (Color online) The piezoelectric buzzer with a duct resulting from
the design chart method. (a) Cross-sectional diagram and (b) photo of the
mockup.

and the acoustical parameters are to be optimized. The SQP
constrained optimization algorithms are applied to search for
optimal parameters of the coupled diaphragm-cavity system.
Table IV summarizes the search results for the first case,
where the duct radius is increased by 45.3% to 1.547 mm
and the height of front cavity is increased by 62.3% to
5.0 mm. The on-axis SPL improvement at 4 kHz achievable
by the optimal design is 5.8 dB. It should be noted that an
increase of duct radius will lead to reduction of the acoustical
mass and, hence, the acoustical resonant frequency. In addi-
tion, increase of the height of the front cavity will lead to the
increase of the cavity volume and, hence, the acoustical com-
pliance.

Table V summarizes the search results of the cavity-
diaphragm parameters for the second case. For the acoustical

Bai et al.: Optimal design of piezoelectric buzzers
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FIG. 14. (Color online) Comparison of the original design and the optimal
design using the design chart method. (a) Electrical impedance and (b) on-
axis SPL.

parameters, the duct radius is increased by 3.3% to 1.1 mm
and the height of the front cavity is reduced by —38.3% to
1.9 mm. For the mechanical parameters, the mechanical
mass is increased by 19.4% to 6.27E—-2 g, whereas the me-
chanical compliance is increased by 10.1% to 2.29E
—5 m/N. However, the electrical parameters remain almost
unchanged. In addition, the resonant frequency of the struc-

TABLE IV. Results obtained using the first optimal design that optimizes
the acoustical system alone.

Parameters Original Optimal Difference
a, (mm) 1.065 1.547 45.3%
dyp (mm) 3.08 5.0 62.3%
Cyp (m°/N) 1.86E-12 3.02E-12 62.4%
Myp (kg/m*) 786.81 486.48 -38.2%
Ryp (Ns/m®) 3.31E6 1.48E6 -55.2%
p 0.0513 0.0317 -38.2%
f.(Hz) 4157.4 4149.72 -0.2%
a 1.157 1.160 0.3%
SPL(dB) at 4 kHz 73.3 79.1 5.8 dB
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TABLE V. Results obtained using the second optimal design that optimizes
both mechanical and acoustical systems.

Parameters Original Optimal Difference
a, (mm) 1.065 1.1 3.3%
d,p (mm) 3.08 1.9 -38.3%
M,y (kg) 5.25E-5 6.27E-5 19.4%
C;, (m/N) 2.08E-5 2.29E-5 10.1%
Ry (N's/m) 0.0386 0.0386 0.0%
C; (F) 9.17E-9 9.17E-9 0.0%
Cy (F) 8.96E-9 8.96E-9 0.0%
Cyr (M3/N) 1.86E-12 1.16E-12 -37.6%
M,p (kg/m*) 786.81 786.81 0.0%
Ryp (N's/m°) 3.31E6 3.31E6 0.0%
p 0.0513 0.0482 —-6.0%
fn (Hz) 4812.4 4201 -12.7%
f. Hz) 4157.4 5283 27.1%
a 1.157 0.795 -31.3%
Ou 40.6 429 5.7%
C, (F) 2.08E-10 1.82E-010 -12.5%
L, (H) 5.13 7.80 52.0%
R, () 3870.5 4874.1 25.9%
¢ 0.0032 0.0028 -12.5%
SPL(dB) at 4 kHz 73.3 82.9 9.6 dB

tural system (f);=4201 Hz) is lower than the resonant fre-
quency of the acoustical system (f,=5283 Hz). The resonant
frequency of the structural system is close to the driving
frequency at 4 kHz. The on-axis SPL improvement at 4 kHz
achievable by this optimal design is 9.6 dB.

For this optimal design, the electrical impedance and the
SPL responses are simulated and shown in Figs. 15(a) and
15(b), respectively. The dashed line represents the original
nonoptimal design. The dotted line represents the design us-
ing the first acoustical optimization approach. The solid line
represents the design using the second mechanical and
acoustical optimization approach. From Fig. 15(a), the elec-
trical impedances of the original design and the first acoustic
optimal designs are in reasonable agreement. However, the
overall level of impedance of the original design and first
optimal design are higher than the second optimal design.
The response of the original design and first optimal design
peak at 5 kHz (the second resonance), whereas the response
of the second optimal design peaks at 4 kHz. In 15(b), the
on-axis SPL responses of the second design is greater than
the first design at the driving frequency 4 kHz, and both are
greater than the SPL of the original nonoptimal design at
4 kHz. Specifically, the SPLs at the driving frequency 4 kHz
of the first optimal design and the second optimal design are
increased by approximately 5.8 and 9.6 dB, respectively,
over the original nonoptimal design. The SPL response at
4 kHz of the second optimal design (82.9 dB) is higher than
the first optimal design (79.1 dB) by 3.8 dB. Note that the
structural resonant frequency of the second optimal design is
near the driving frequency, while in the first optimal design
the acoustical resonant frequency is near the driving fre-
quency. Summarizing, a higher level of acoustic pressure ap-
pears for the resonant frequency near the original structural
resonant frequency. This fact can be utilized for further im-
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FIG. 15. (Color online) Comparison of the original design and the optimal
designs using two constrained optimization approaches. (a) Electrical im-
pedance and (b) on-axis SPL.

provement of the construction of the buzzer. The optimal
result shows that the SPL attainable at the driving frequency
can be significantly increased over the nonoptimal design. In
addition, the resonant frequency of the structural system
should be near the driving frequency of the piezoelectric
buzzer. This design strategy proves effective in achieving a
much improved performance, with the first resonant fre-
quency fixed at 4 kHz.

V. CONCLUSIONS

An optimization technique has been presented in the pa-
per for designing piezoelectric buzzers. An insightful inspec-
tion revealed that this buzzer problem can be closely related
to the dynamic vibration absorber theory. A design chart was
devised to design piezoelectric buzzers by exploiting the
same mechanism, but opposite strategy, as the vibration ab-
sorber design. The guidelines of using the design chart were
summarized in the paper. In order to establish a simulation
platform for design optimization, a special kind of experi-
mental identification procedure was also developed to esti-
mate the lumped parameters required in the EMA analogous
circuit. Using the simulation platform, electrical impedance
and on-axis sound pressure response can be predicted by
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solving loop equations of the analogous circuit. The reso-
nance frequencies of the coupled system are generally differ-
ent from those of the individual subsystems. From the char-
acteristic equation, the resonance frequencies of the coupled
mechanical and acoustical system can be calculated. Maxi-
mum acoustical output can thus be attained by locking the
resonance peak to the driving frequency.

Apart from the design chart method, constrained optimi-
zation techniques were also employed to find the design that
maximizes the sound pressure output of the buzzer under
practical constraints. Two approaches were applied in the
optimization:  acoustical-system-alone  approach  and
mechanical-acoustical system approach. Both designs ob-
tained using the optimization procedures provide significant
performance improvement over the original design in terms
of sound pressure output. However, the benefit of optimizing
both mechanical and acoustical parameters is preferred over
optimizing the acoustical parameters alone.
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