INGENUITY UNLIMITED Our regular round-up of readers' own circuits. We pay between £10 and £50 for all material published, depending on length and technical merit. We're looking for novel applications and circuit tips, not simply mechanical or electrical ideas. Ideas must be the reader's own work and not have been submitted for publication elsewhere. The circuits shown have NOT been proven by us. Ingenuity Unlimited is open to ALL abilities, but items for consideration in this column should preferably be typed or word-processed, with a brief circuit description (between 100 and 500 words maximum) and full circuit diagram showing all relevant component values. Please draw all circuit schematics as clearly as possible. Send your circuit ideas to: Alan Winstanley, Ingenuity Unlimited, Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset BS21 1PF. They could earn you some real cash and a prize! ## WIN A PICO PC BASED OSCILLOSCOPE - 50MSPS Dual Channel Storage Oscilloscope - 25MHz Spectrum Analyser - Multimeter Frequency Meter - Signal Generator If you have a novel circuit idea which would be of use to other readers then a Pico Technology PC based oscilloscope could be yours. Every six months, Pico Technology will be awarding an ADC200-50 digital storage oscilloscope for the best IU submission. In addition, two single channel ADC-40s will be presented to the runners-up. ## One-Volt L.E.D. - A Bright Light ply voltage is difficult as most devices have a forward drop of at least 1-8V. This excludes their use in products operating from a single 1-2V or 1-5V battery. However, by applying techniques used in d.c.-to-d.c. converters, a very compact, economical and efficient solution can be produced. The circuit diagrams shown in Fig.1a to Fig.1c will brightly illuminate an l.e.d. from a supply as low as 750mV and as high as 1-5V, i.e., most single cell batteries available including nearly dead In the Micro-torch circuit Fig. Ia, transistor TR1, transformer T1 and resistor R1 form a current-controlled switching oscillator. Each time TR1 turns off, the collapsing magnetic field in T1 generates a 30V (off-load) positive pulse at TR1's collector (c). This, in series with the supply, is fed directly to the l.e.d. Switching occurs at a very high frequency and with a low duty cycle which results in an average l.e.d. current of about 18mA, sufficient to illuminate most l.e.d.s. Current, and therefore brilliance, can be increased by reducing the value of resistor R1 and vice versa. A value of 2 kilohms produces 30mA which is more than enough even for hyperbright devices. Conversion efficiency depends on transistor TR1. Although any transistor can be used, high performance devices with very low VCESATI yield the best results: for the ZTX450, efficiency is 73 per cent. A ZTX650 increases it to 79 per cent whilst a BC550 reduces efficiency to 57 per cent. Even at this value it still out-performs conventional circuits using higher voltage supplies where efficiency rarely exceeds 50 per cent. A micro-toroid centre tapped transformer, T1, is constructed using an anti-parasitic bead 6mm by 4mm in diameter with a 2mm hole. Fold 90cm of 38s.w.g. enamelled copper wire in half, press the crease tightly together and then thread the folded wire repeatedly through the bead hole until 20 turns are wound. Trim protruding wires to 25mm. The bead now contains two sets of 20 turns with two starts at one extremity and two ends at the other. Join an appropriate start and end together to form the tap (CT). If the circuit fails to oscillate, check the tap is correctly formed; otherwise, it's most likely a shorted turn. The simplest application. Fig. le is a Micro-torch, power-on indicator or simple infrared transmitter. Indicators for use with other circuits are shown in Fig. lb and Fig. lc, the latter consuming no power when off. Diode D2 in Fig. lc raises the forward drop as some Le.d.s leak when operated with a fresh alkaline battery; it is also necessary with infrared devices that have a forward drop of less than 1-5 V. When used with other circuits, decoupling with capacitor C1 in close proximity to the oscillator is recommended. Also keep lead lengths short, especially to the transformer, as the circuit operates at a high frequency; fortunately using a micro-toroid transformer significantly reduces radiation. Z. Kaparnik, Swindon, Wilts. ## BE INTERACTIVE IU is your forum where you can offer others readers the benefit of your Ingenuity. Share those ideas, earn some cash and possibly a prize! Fig.1. Three drive circuits for operating l.e.d.s from supply voltages below 1.5V.